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Introduction

I Significance test is a formal procedure for comparing observed
data with a hypothesis whose truth we want to assess.

I The hypothesis is a statement about the parameters in a
population or model.

I The results of a test are expressed in terms of a probability that
measures how well the data and the hypothesis agree.
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Terminology

I Null Hypothesis denoted by H0. The test of significance is
designed to assess the strength of the evidence against the null
hypothesis. The null hypothesis is usually a statement of “no
effect" or “no difference" (the default assumption that nothing
happened or changed).

I Alternative Hypothesis denoted by either H1 or Ha. It is the
competing argument with respect to H0, however it needs to be
decided if it is one-sided or two-sided.

I Test Statistic measures compatibility between the null
hypothesis and the data. It is employed for calculating the
probability needed for our test of significance.

I p−value is the probability, computed assuming that H0 is true,
that the test statistic would a take a value as extreme or more
extreme than what was actually observed. The smaller the
p−value, the stronger the evidence against H0

I α− level of significance is the decisive value of p. If p ≤ α then
we say that the data is statistically significant at level α.
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Example 1

In agricultural modeling earth’s temperature plays an important role.
We want to compare ground vs air-based temperature sensors.
Ground-based sensors are expensive, and air-based (from satellites
or airplanes) of infrared wavelengths may be biased. Temperature
data were collected by ground and air-based sensors at 10 locations,
and we want to test if they are different.
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Null vs Alternative hypothesis

I Hypotheses always refer to some population or model, not to a
particular outcome. For this, we state H0, H1 in terms of
population parameters.

I µ is the population’s difference between ground and air
temperatures.

H0 : µ = 0 vs H1 : µ 6= 0

I If there is a reason to believe before any data collection that the
parameter being tested is necessarily restricted to one particular
“side" of H0 then H1 is one-sided.

Left-tailed test H0 : µ = 0 vs H1 : µ < 0

or
Right-tailed test H0 : µ = 0 vs H1 : µ > 0
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Test statistic

I The test is based on a statistic that estimates the parameter that
appears in the hypotheses.

I If H0 is true then we expect the estimate to take a value “close" to
the parameter value specified by H0.

I Values of the estimate far from the parameter value in H0 yield
evidence against H0.

test-statistic =
estimate− hypothesized value
standard deviation of estimate

I The test statistic is a random variable with a distribution that we
know.
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Test statistic for Example 1

I Recall: test-statistic =
estimate−hypothesized value
standard deviation of estimate

I The hypothesized value is µ = 0.

I The estimate of the the mean is the average of differences
provided by the data., i.e. for this data d̄ = −1.55.

I Let’s assume that we know (typically not true) that the standard
deviation of population is σ = 2

z∗ =
d̄ − 0
σ/
√

n
=
−1.55− 0

2/
√

10
= −2.4508
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p−value

I The key to calculating the p−value is the sampling distribution of
the test statistic.

I Assuming that the data is normal (needs to be checked), z∗ is
a realization of Z from the standard normal distribution N(0, 1).
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Back to example
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Example: p = 2P(Z ≥ | − 2.4508|) = 0.0143.

I A mean difference as large as that observed would occur fewer
than 14 times in 1000 samples (of size 10) if the population
mean difference were 0.

I This is convincing evidence that the mean difference between
ground and air-based measured temperatures is not zero.
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α−level of significance

I A p−value is more informative than a “reject-or-not" the H0 .

I However, a quick way of assessment is needed.

I α−level of significance shows how much evidence against H0
you need as decisive.

I If p−value ≤ α, reject H0 (accept H1).
I If p−value > α, then the data do not provide sufficient

evidence to reject H0.
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Assumption: known variance

I H0 : µ = c vs H1 : µ 6= c
I Recall z− statistic = x̄−c

σ/
√

n

I Typically variance is unknown and needs to be estimated

I We do by the sample variance, s

I Test-statistic (mean of population):

t − statistic =
x̄− c
s/
√

n

I Test follows the same strategy (compute p−value and compare it
with α)
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Example 1

In agricultural modeling earth’s temperature plays an important role.
We want to compare ground vs air-based temperature sensors.
Ground-based sensors are expensive, and air-based (from satellites
or airplanes) of infrared wavelengths may be biased. Temperature
data were collected by ground and air-based sensors at 10 locations,
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Example 1

I H0 : µ = 0 vs H1 : µ 6= 0

I t∗ = −1.55−0
0.7706/

√
10

= −6.458

I p− value = 2P(T9 ≥ 6.458) ≈ 0.0002

I A mean difference as large as that observed would occur fewer
than 2 times in 10,000 samples (of size 10) if the population
mean difference were 0.

I p− value < α so reject H0.
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Robustness of t tests

I t−tests are not robust against outliers (x̄, s not resistant to
outliers).

I Average height of soybean plants at R1 stage of their growth is 16".
Imagine 3 plants with height 16" and 3 with 20", their average now
is 18".

I t−tests robust against deviations from normality but not to
outliers and presence of strong skewness

Right-skewed data
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Some advice

I Small sample size: use t−test if the data are close to
normal. If outliers are present do not use t.

I Moderate sample size: use t−test except in the presence of
strong skewness or outliers.

I Large sample size: use t−test even for clearly skewed
distributions (transform the data first, e.g. use logarithm)

Right-skewed data Log-transformed data
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Checking for outliers and skewness
I Normal quantile plot
I Stemplot
I Boxplot
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I Inference for standard deviations, or proportions or parameters
related to regression.

I Different hypotheses but same strategy.

I What only changes if the test-statistic and its associated
distribution.

I if small sample size: proportions use the binomial distribution

I if large sample size: proportions use normal distribution
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Summary

I The point of a test of significance is to provide a clear statement
of the degree of evidence provided by the sample against H0.

I We wrote p−value≤ α, however there is no sharp border
between significant and not significant.

I There is an increasingly strong evidence to reject H0 as the
p−value decreases.

I When H0 (no effect or no difference) can be rejected at the usual
level α = 0.05, there is good evidence that an effect is present
(could be small).

I Design carefully your study and plot your data.
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To p or not to p?

I A Bayesian approach to hypothesis testing

I Attempt a statistical learning approach.
I classification
I clustering
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Statistical Learning Example: Classification
I Consider a set of data obtained from soybean plants.

I Each soybean has exactly one disease.
I Goal is to “understand" the characteristics of (4) different types of

soybean diseases given features extracted from the plant so that
when we are given a new soybean crop to be able to predict
accurately what kind of disease it may have.

I p = 35 predictors.
I Based on condition and attributes of leaves, fruitpods, seeds, etc.
I Only n = 12 examples, 3 for each disease class!

Dataset sampled from UC Irvine data Repository: https://archive.ics.uci.edu/ml/datasets/Soybean+(Small)
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A Small Dataset of Soybeans

I Want to maximize the amount of data we can use to build the
model on due to small sample size.

I Can we use all of the data to build the model?

I No! Need to validate the model to ensure our accuracy results are
not biased!

I One option: leave one out cross validation.

I Train the model on all but one data point, and see how the model
performs on the held out instance.

I Average out the error over all the instances.
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Logistic Regression: A Statistics Approach

I We first model using Logistic Regression.

I Logistic Regression attempts to model the log probability ratio

log
probability of disease 1
probability of disease 2

linearly in the predictors

I Parameters are estimated by some optimization method
(maximum likelihood approach) and significance of predictors
can be tested using significance tests (similar to what we
discussed earlier).
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Logistic regression for the soybeans dataset

I Employ logistic regression on 11 points

I Predict using the 12th point

I Measure the error (or accuracy) by answering the question “did I
get it right?"

I Repeat 12 times so all points get held out once

Model Accuracy
Logistic Regression 91.67%

I 91.67% means that 11 out of 12 times I got it right.
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Something different: Decision Tree

I Decision trees are recursive partitioning algorithms that come-up
with a tree-like structure.

I These structures represent patterns in an underlying data set.

I The top node is the root node specifying a testing condition of
which the outcome corresponds to a branch leading up to an
internal node.

I The terminal nodes (leaf nodes) of the tree assign the
classifications.
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Decision tree

I Splitting decision
I Strategy is to minimize the impurity at the leaves level

I Stopping decision
I Avoid overfitting: if you split too much, one gets many pure classes

but with very few members in it.

I Assignment decision: what class to assign to a leaf node?
I Look at the majority class within the leaf node.
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Back to soybean problem

I Now attempt to model using a decision-tree.

I Model attempts to build a tree (using 11 data) to create the most
“pure” nodes at each step, and leaf nodes are labeled according
to the majority class.

I New examples (the 12th ) are then sent down the tree and
classified according to the label of the leaf they end up in.

Model Accuracy
Logistic Regression 91.67%

Decision Tree 75%

I This means 9 out of 12 were classified correctly

I Can we do better?
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Turning Decision Trees into Random Forests

I Stochastically generate a large number of decision trees.

I At each split within each tree use a random subset of predictors
instead of all of them.

I Predict on a new example (soybean) by taking the majority class
prediction out of the K trees.
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Take home message

Model Accuracy
Logistic Regression 91.67%

Decision Tree 75%
Random Forest 100%

I Statistical Learning methods sometimes may be more
appropriate than more “traditional” methods.

I When dealing with a small dataset, statistical learning techniques
such as leave one out cross validation allow training on a large
portion of the dataset while giving a good estimate for the true
error.
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Conclusion

I Dived into hypothesis testing bolts and nuts

I Use with caution hypothesis testing especially when small
sample size data (e.g., look for outliers and skewness)

I Nothing is wrong with p−value however need to take it for what it
is (a probability such that the smaller it is the stronger the
evidence against the H0).

I There are alternatives, e.g. statistical learning
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